Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Trajectory Clustering, Modelling, and Selection with the Focus on Airspace Protection (1603.09208v1)

Published 30 Mar 2016 in stat.AP

Abstract: Take-off and landing are the periods of a flight where aircraft are most vulnerable to a ground based rocket attack by terrorists. While aircraft approach and depart from airports on pre-defined flight paths, there is a degree of uncertainty in the trajectory of each individual aircraft. Capturing and characterizing these deviations is important for accurate strategic planning for the defence of airports against terrorist attack. A methodology is demonstrated whereby approach and departure trajectories to a given airport are characterized statistically from historical data. It uses a two-step process of first clustering to extract the common trend, and then modelling uncertainty using Gaussian Processes (GPs). Furthermore it is shown that this approach can be used to either select probabilistic regions of airspace where trajectories are likely and - if required - can automatically generate a set of representative trajectories, or select key trajectories that are both likely and critically vulnerable. An evaluation of the methodology is demonstrated on an example data-set collected by the ground radar at an airport. The evaluation indicates that 99.8% of the calculated footprint underestimates less than 5% when replacing the original trajectory data with a set of representative trajectories.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube