Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On kernel methods for covariates that are rankings (1603.08035v2)

Published 25 Mar 2016 in stat.ML, cs.DM, and cs.LG

Abstract: Permutation-valued features arise in a variety of applications, either in a direct way when preferences are elicited over a collection of items, or an indirect way in which numerical ratings are converted to a ranking. To date, there has been relatively limited study of regression, classification, and testing problems based on permutation-valued features, as opposed to permutation-valued responses. This paper studies the use of reproducing kernel Hilbert space methods for learning from permutation-valued features. These methods embed the rankings into an implicitly defined function space, and allow for efficient estimation of regression and test functions in this richer space. Our first contribution is to characterize both the feature spaces and spectral properties associated with two kernels for rankings, the Kendall and Mallows kernels. Using tools from representation theory, we explain the limited expressive power of the Kendall kernel by characterizing its degenerate spectrum, and in sharp contrast, we prove that Mallows' kernel is universal and characteristic. We also introduce families of polynomial kernels that interpolate between the Kendall (degree one) and Mallows' (infinite degree) kernels. We show the practical effectiveness of our methods via applications to Eurobarometer survey data as well as a Movielens ratings dataset.

Citations (21)

Summary

We haven't generated a summary for this paper yet.