Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Uncertain Trajectories from Partial Observations (1603.07641v1)

Published 24 Mar 2016 in cs.DB

Abstract: The explosion in the availability of GPS-enabled devices has resulted in an abundance of trajectory data. In reality, however, majority of these trajectories are collected at a low sampling rate and only provide partial observations on their actually traversed routes. Consequently, they are mired with uncertainty. In this paper, we develop a technique called InferTra to infer uncertain trajectories from network-constrained partial observations. Rather than predicting the most likely route, the inferred uncertain trajectory takes the form of an edge-weighted graph and summarizes all probable routes in a holistic manner. For trajectory inference, InferTra employs Gibbs sampling by learning a Network Mobility Model (NMM) from a database of historical trajectories. Extensive experiments on real trajectory databases show that the graph-based approach of InferTra is up to 50% more accurate, 20 times faster, and immensely more versatile than state-of-the-art techniques.

Citations (50)

Summary

We haven't generated a summary for this paper yet.