Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality (1603.03843v1)

Published 12 Mar 2016 in math.RT

Abstract: We prove Turner's conjecture, which describes the blocks of the Hecke algebras of the symmetric groups up to derived equivalence as certain explicit Turner double algebras. Turner doubles are Schur-algebra-like `local' objects, which replace wreath products of Brauer tree algebras in the context of the Brou\'e abelian defect group conjecture for blocks of symmetric groups with non-abelian defect groups. The main tools used in the proof are generalized Schur algebras corresponding to wreath products of zigzag algebras and imaginary semicuspidal quotients of affine KLR algebras.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.