Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An integral functional driven by fractional Brownian motion (1602.08801v1)

Published 29 Feb 2016 in math.PR

Abstract: Let $BH$ be a fractional Brownian motion with Hurst index $0<H\<1$ and the weighted local time ${\mathscr L}^H(\cdot,t)$. In this paper, we consider the integral functional $$ {\mathcal C}^H_t(a):=\lim_{\varepsilon\downarrow 0}\int_0^t1_{\{|B^H_s-a|>\varepsilon}}\frac1{BH_s-a}ds{2H}\equiv \frac1{\pi}{\mathscr H}{\mathscr L}H(\cdot,t)(a) $$ in $L2(\Omega)$ with $ a\in {\mathbb R}, t\geq 0$ and ${\mathscr H}$ denoting the Hilbert transform. We show that $$ {\mathcal C}H_t(a)=2\left((BH_t-a)\log|BH_t-a|-BH_t+a\log|a| -\int_0t\log|BH_s-a|\delta BH_s\right) $$ for all $a\in {\mathbb R}, t\geq 0$ which is the fractional version of Yamada's formula, where the integral is the Skorohod integral. Moreover, we introduce the following {\it occupation type formula}: $$ \int_{\mathbb R}{\mathcal C}H_t(a)g(a)da=2H\pi\int_0t({\mathscr H}g)(BH_s)s{2H-1}ds $$ for all continuous functions $g$ with compact support.

Summary

We haven't generated a summary for this paper yet.