Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The comb representation of compact ultrametric spaces (1602.08246v1)

Published 26 Feb 2016 in math.GN, math.PR, and q-bio.PE

Abstract: We call a \emph{comb} a map $f:I\to [0,\infty)$, where $I$ is a compact interval, such that ${f\ge \varepsilon}$ is finite for any $\varepsilon$. A comb induces a (pseudo)-distance $\dtf$ on ${f=0}$ defined by $\dtf(s,t) = \max_{(s\wedge t, s\vee t)} f$. We describe the completion $\bar I$ of ${f=0}$ for this metric, which is a compact ultrametric space called \emph{comb metric space}. Conversely, we prove that any compact, ultrametric space $(U,d)$ without isolated points is isometric to a comb metric space. We show various examples of the comb representation of well-known ultrametric spaces: the Kingman coalescent, infinite sequences of a finite alphabet, the $p$-adic field and spheres of locally compact real trees. In particular, for a rooted, locally compact real tree defined from its contour process $h$, the comb isometric to the sphere of radius $T$ centered at the root can be extracted from $h$ as the depths of its excursions away from $T$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.