Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Entropy of Isometries Semi-groups of Hyperbolic space (1602.07809v1)

Published 25 Feb 2016 in math.MG, math.DS, math.GR, and math.NT

Abstract: We give a generalization to convex co-compact semigroups of a beautiful theorem of Patterson-Sullivan, telling that the critical exponent (that is the exponential growth rate) equals the Hausdorff dimension of the limit set (that is the smallest closed non-empty invariant subset), for a isometries discrete group of a proper hyperbolic space with compact boundary. To do that, we introduce a notion of entropy, which generalize the notion of critical exponent of discrete groups, and we show that it is equal to the upper bound of critical exponents of Schottky sub-semigroups (which are semigroups having the simplest dynamic). We obtains several others corollaries, such that the lower semi-continuity of the entropy, the fact that the critical exponent of a separate semigroup, that is defined as an upper limit, is in fact a true limit, and we obtain the existence of "big" Schottky sub-semigroups in discrete groups of isometries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube