Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm (1602.06929v2)

Published 22 Feb 2016 in cs.LG, cs.DS, cs.NE, and stat.ML

Abstract: This work provides improved guarantees for streaming principle component analysis (PCA). Given $A_1, \ldots, A_n\in \mathbb{R}{d\times d}$ sampled independently from distributions satisfying $\mathbb{E}[A_i] = \Sigma$ for $\Sigma \succeq \mathbf{0}$, this work provides an $O(d)$-space linear-time single-pass streaming algorithm for estimating the top eigenvector of $\Sigma$. The algorithm nearly matches (and in certain cases improves upon) the accuracy obtained by the standard batch method that computes top eigenvector of the empirical covariance $\frac{1}{n} \sum_{i \in [n]} A_i$ as analyzed by the matrix Bernstein inequality. Moreover, to achieve constant accuracy, our algorithm improves upon the best previous known sample complexities of streaming algorithms by either a multiplicative factor of $O(d)$ or $1/\mathrm{gap}$ where $\mathrm{gap}$ is the relative distance between the top two eigenvalues of $\Sigma$. These results are achieved through a novel analysis of the classic Oja's algorithm, one of the oldest and most popular algorithms for streaming PCA. In particular, this work shows that simply picking a random initial point $w_0$ and applying the update rule $w_{i + 1} = w_i + \eta_i A_i w_i$ suffices to accurately estimate the top eigenvector, with a suitable choice of $\eta_i$. We believe our result sheds light on how to efficiently perform streaming PCA both in theory and in practice and we hope that our analysis may serve as the basis for analyzing many variants and extensions of streaming PCA.

Citations (125)

Summary

We haven't generated a summary for this paper yet.