Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of Stochastic Gradient Descent for PCA (1509.09002v2)

Published 30 Sep 2015 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of principal component analysis (PCA) in a streaming stochastic setting, where our goal is to find a direction of approximate maximal variance, based on a stream of i.i.d. data points in $\realsd$. A simple and computationally cheap algorithm for this is stochastic gradient descent (SGD), which incrementally updates its estimate based on each new data point. However, due to the non-convex nature of the problem, analyzing its performance has been a challenge. In particular, existing guarantees rely on a non-trivial eigengap assumption on the covariance matrix, which is intuitively unnecessary. In this paper, we provide (to the best of our knowledge) the first eigengap-free convergence guarantees for SGD in the context of PCA. This also partially resolves an open problem posed in \cite{hardt2014noisy}. Moreover, under an eigengap assumption, we show that the same techniques lead to new SGD convergence guarantees with better dependence on the eigengap.

Citations (83)

Summary

We haven't generated a summary for this paper yet.