Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally Stationary Functional Time Series (1602.05125v3)

Published 16 Feb 2016 in stat.ME, math.ST, and stat.TH

Abstract: The literature on time series of functional data has focused on processes of which the probabilistic law is either constant over time or constant up to its second-order structure. Especially for long stretches of data it is desirable to be able to weaken this assumption. This paper introduces a framework that will enable meaningful statistical inference of functional data of which the dynamics change over time. We put forward the concept of local stationarity in the functional setting and establish a class of processes that have a functional time-varying spectral representation. Subsequently, we derive conditions that allow for fundamental results from nonstationary multivariate time series to carry over to the function space. In particular, time-varying functional ARMA processes are investigated and shown to be functional locally stationary according to the proposed definition. As a side-result, we establish a Cram\'er representation for an important class of weakly stationary functional processes. Important in our context is the notion of a time-varying spectral density operator of which the properties are studied and uniqueness is derived. Finally, we provide a consistent nonparametric estimator of this operator and show it is asymptotically Gaussian using a weaker tightness criterion than what is usually deemed necessary.

Summary

We haven't generated a summary for this paper yet.