2000 character limit reached
On the estimation of locally stationary functional time series (2105.11873v7)
Published 25 May 2021 in math.ST, stat.ME, and stat.TH
Abstract: This study develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series (LSFTS). We investigate a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of an LSFTS. In particular, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions and establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss methods for testing the equality of time-varying mean functions in two functional samples.