Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Forest Based Approach for Concept Drift Handling (1602.04435v1)

Published 14 Feb 2016 in cs.AI, cs.LG, math.ST, and stat.TH

Abstract: Concept drift has potential in smart grid analysis because the socio-economic behaviour of consumers is not governed by the laws of physics. Likewise there are also applications in wind power forecasting. In this paper we present decision tree ensemble classification method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted Ensemble (AWE) method. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits both temporal weighting of samples and ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method with original random forest with incorporated "replace-the-looser" forgetting andother state-of-the-art concept-drfit classifiers like AWE2.

Citations (42)

Summary

We haven't generated a summary for this paper yet.