Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diverse Instances-Weighting Ensemble based on Region Drift Disagreement for Concept Drift Adaptation (2004.05810v1)

Published 13 Apr 2020 in cs.LG and stat.ML

Abstract: Concept drift refers to changes in the distribution of underlying data and is an inherent property of evolving data streams. Ensemble learning, with dynamic classifiers, has proved to be an efficient method of handling concept drift. However, the best way to create and maintain ensemble diversity with evolving streams is still a challenging problem. In contrast to estimating diversity via inputs, outputs, or classifier parameters, we propose a diversity measurement based on whether the ensemble members agree on the probability of a regional distribution change. In our method, estimations over regional distribution changes are used as instance weights. Constructing different region sets through different schemes will lead to different drift estimation results, thereby creating diversity. The classifiers that disagree the most are selected to maximize diversity. Accordingly, an instance-based ensemble learning algorithm, called the diverse instance weighting ensemble (DiwE), is developed to address concept drift for data stream classification problems. Evaluations of various synthetic and real-world data stream benchmarks show the effectiveness and advantages of the proposed algorithm.

Citations (45)

Summary

We haven't generated a summary for this paper yet.