Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pursuits in Structured Non-Convex Matrix Factorizations (1602.04208v1)

Published 12 Feb 2016 in cs.LG and stat.ML

Abstract: Efficiently representing real world data in a succinct and parsimonious manner is of central importance in many fields. We present a generalized greedy pursuit framework, allowing us to efficiently solve structured matrix factorization problems, where the factors are allowed to be from arbitrary sets of structured vectors. Such structure may include sparsity, non-negativeness, order, or a combination thereof. The algorithm approximates a given matrix by a linear combination of few rank-1 matrices, each factorized into an outer product of two vector atoms of the desired structure. For the non-convex subproblems of obtaining good rank-1 structured matrix atoms, we employ and analyze a general atomic power method. In addition to the above applications, we prove linear convergence for generalized pursuit variants in Hilbert spaces - for the task of approximation over the linear span of arbitrary dictionaries - which generalizes OMP and is useful beyond matrix problems. Our experiments on real datasets confirm both the efficiency and also the broad applicability of our framework in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.