Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Limits of Riemannian 4-manifolds and the symplectic geometry of their twistor spaces (1602.03829v2)

Published 11 Feb 2016 in math.DG and math.SG

Abstract: The twistor space of a Riemannian 4-manifold carries two almost complex structures, $J_+$ and $J_-$, and a natural closed 2-form $\omega$. This article studies limits of manifolds for which $\omega$ tames either $J_+$ or $J_-$. This amounts to a curvature inequality involving self-dual Weyl curvature and Ricci curvature, and which is satisfied, for example, by all anti-self-dual Einstein manifolds with non-zero scalar curvature. We prove that if a sequence of manifolds satisfying the curvature inequality converges to a hyperk\"ahler limit X (in the $C2$ pointed topology) then X cannot contain a holomorphic 2-sphere (for any of its hyperk\"ahler complex structures). In particular, this rules out the formation of bubbles modelled on ALE gravitational instantons in such families of metrics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube