Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Phase constants in the Fock-Goncharov quantum cluster varieties (1602.00797v3)

Published 2 Feb 2016 in math.QA, math.GT, and math.RT

Abstract: A cluster variety of Fock and Goncharov is a scheme constructed by gluing split algebraic tori, called seed tori, via birational gluing maps called mutations. In quantum theory, the ring of functions on seed tori are deformed to non-commutative rings, represented as operators on Hilbert spaces. Mutations are quantized to unitary maps between the Hilbert spaces intertwining the representations. These unitary intertwiners are described using the quantum dilogarithm function $\Phi\hbar$. Algebraic relations among classical mutations are satisfied by the intertwiners up to complex constants. The present paper shows that these constants are $1$. So the mapping class group representations resulting from the Chekhov-Fock-Goncharov quantum Teichm\"uller theory are genuine, not projective. During the course, the hexagon and the octagon operator identities for $\Phi\hbar$ are derived.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)