Holomorphic Symplectic Fermions (1601.06451v1)
Abstract: Let V be the even part of the vertex operator super-algebra of r pairs of symplectic fermions. Up to two conjectures, we show that V admits a unique holomorphic extension if r is a multiple of 8, and no holomorphic extension otherwise. This is implied by two results obtained in this paper: 1) If r is a multiple of 8, one possible holomorphic extension is given by the lattice vertex operator algebra for the even self dual lattice $D_r+$ with shifted stress tensor. 2) We classify Lagrangian algebras in SF(h), a ribbon category associated to symplectic fermions. The classification of holomorphic extensions of V follows from 1) and 2) if one assumes that SF(h) is ribbon equivalent to Rep(V), and that simple modules of extensions of V are in one-to-one relation with simple local modules of the corresponding commutative algebra in SF(h).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.