Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Emergent classical geometries on boundaries of randomly connected tensor networks (1601.04232v1)

Published 16 Jan 2016 in hep-th and gr-qc

Abstract: It is shown that classical spaces with geometries emerge on boundaries of randomly connected tensor networks with appropriately chosen tensors in the thermodynamic limit. With variation of the tensors, the dimensions of the spaces can be freely chosen, and the geometries, which are curved in general, can be varied. We give the explicit solvable examples of emergent flat tori in arbitrary dimensions, and the correspondence from the tensors to the geometries for general curved cases. The perturbative dynamics in the emergent space is shown to be described by an effective action which is invariant under the spatial diffeomorphism due to the underlying orthogonal group symmetry of the randomly connected tensor network. It is also shown that there are various phase transitions among spaces, including extended and point-like ones, under continuous change of the tensors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.