Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Markov processes with spatial delay: path space characterization, occupation time and properties (1601.03759v3)

Published 14 Jan 2016 in math.PR

Abstract: In this paper, we study one dimensional Markov processes with spatial delay. Since the seminal work of Feller, we know that virtually any one dimensional, strong, homogeneous, continuous Markov process can be uniquely characterized via its infinitesimal generator and the generator's domain of definition. Unlike standard diffusions like Brownian motion, processes with spatial delay spend positive time at a single point of space. Interestingly, the set of times that a delay process spends at its delay point is nowhere dense and forms a positive measure Cantor set. The domain of definition of the generator has restrictions involving second derivatives. In this article we provide a pathwise characterization for processes with delay in terms of an SDE and an occupation time formula involving the symmetric local time. This characterization provides an explicit Doob-Meyer decomposition, demonstrating that such processes are semi-martingales and that all of stochastic calculus including It^{o} formula and Girsanov formula applies. We also establish an occupation time formula linking the time that the process spends at a delay point with its symmetric local time there. A physical example of a stochastic dynamical system with delay is lastly presented and analyzed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.