Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Stochastic heat equation limit of a (2+1)d growth model (1601.02767v1)

Published 12 Jan 2016 in math.PR, math-ph, and math.MP

Abstract: We determine a $q\to 1$ limit of the two-dimensional $q$-Whittaker driven particle system on the torus studied previously in [Corwin-Toninelli, arXiv:1509.01605]. This has an interpretation as a $(2+1)$-dimensional stochastic interface growth model, that is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the $(2+1)$-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in $(2+1)$-dimension is irrelevant.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.