Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Knot contact homology, string topology, and the cord algebra (1601.02167v2)

Published 9 Jan 2016 in math.SG and math.GT

Abstract: The conormal Lagrangian $L_K$ of a knot $K$ in $\mathbb{R}3$ is the submanifold of the cotangent bundle $T* \mathbb{R}3$ consisting of covectors along $K$ that annihilate tangent vectors to $K$. By intersecting with the unit cotangent bundle $S* \mathbb{R}3$, one obtains the unit conormal $\Lambda_K$, and the Legendrian contact homology of $\Lambda_K$ is a knot invariant of $K$, known as knot contact homology. We define a version of string topology for strings in $\mathbb{R}3 \cup L_K$ and prove that this is isomorphic in degree 0 to knot contact homology. The string topology perspective gives a topological derivation of the cord algebra (also isomorphic to degree 0 knot contact homology) and relates it to the knot group. Together with the isomorphism this gives a new proof that knot contact homology detects the unknot. Our techniques involve a detailed analysis of certain moduli spaces of holomorphic disks in $T* \mathbb{R}3$ with boundary on $\mathbb{R}3 \cup L_K$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.