Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-posedness for the Navier-Stokes equations with data in homogeneous Sobolev-Lorentz spaces (1601.01742v1)

Published 8 Jan 2016 in math.AP

Abstract: In this paper, we study local well-posedness for the Navier-Stokes equations (NSE) with the arbitrary initial value in homogeneous Sobolev-Lorentz spaces $\dot{H}s_{L{q, r}}(\mathbb{R}d):= (-\Delta){-s/2}L{q,r}$ for $d \geq 2, q > 1, s \geq 0$, $1 \leq r \leq \infty$, and $ \frac{d}{q}-1 \leq s < \frac{d}{q}$, this result improves the known results for $q > d,r=q, s = 0$ (see M. Cannone (1995) and M. Cannone and Y. Meyer (1995)) and for $q =r= 2, \frac{d}{2} - 1 < s < \frac{d}{2}$ (see M. Cannone (1995, J. M. Chemin (1992)). In the case of critical indexes ($s=\frac{d}{q}-1$), we prove global well-posedness for NSE provided the norm of the initial value is small enough. The result that is a generalization of the result of M. Cannone (1997) for $q = r=d, s=0$.

Summary

We haven't generated a summary for this paper yet.