Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-posedness for the Navier-Stokes equations with datum in Sobolev-Fourier-Lorentz spaces (1601.01441v1)

Published 7 Jan 2016 in math.AP, math-ph, and math.MP

Abstract: In this note, for $s \in \mathbb R$ and $1 \leq p, r \leq \infty$, we introduce and study Sobolev-Fourier-Lorentz spaces $\dot{H}s_{\mathcal{L}{p, r}}(\mathbb{R}d)$. In the family spaces $\dot{H}s_{\mathcal{L}{p, r}}(\mathbb{R}d)$, the critical invariant spaces for the Navier-Stokes equations correspond to the value $s = \frac{d}{p} - 1$. When the initial datum belongs to the critical spaces $\dot{H}{\frac{d}{p} - 1}{\mathcal{L}{p,r}}(\mathbb{R}d)$ with $d \geq 2, 1 \leq p <\infty$, and $1 \leq r < \infty$, we establish the existence of local mild solutions to the Cauchy problem for the Navier-Stokes equations in spaces $L\infty([0, T]; \dot{H}{\frac{d}{p} - 1}{\mathcal{L}{p, r}}(\mathbb{R}d))$ with arbitrary initial value, and existence of global mild solutions in spaces $L\infty([0, \infty); \dot{H}{\frac{d}{p} - 1}{\mathcal{L}{p, r}}(\mathbb{R}d))$ when the norm of the initial value in the Besov spaces $\dot{B}{\frac{d}{\tilde p} - 1, \infty}{\mathcal{L} {\tilde p,\infty}}(\mathbb{R}d)$ is small enough, where $\tilde p$ may take some suitable values.

Summary

We haven't generated a summary for this paper yet.