Well-posedness for the Navier-Stokes equations with datum in Sobolev-Fourier-Lorentz spaces (1601.01441v1)
Abstract: In this note, for $s \in \mathbb R$ and $1 \leq p, r \leq \infty$, we introduce and study Sobolev-Fourier-Lorentz spaces $\dot{H}s_{\mathcal{L}{p, r}}(\mathbb{R}d)$. In the family spaces $\dot{H}s_{\mathcal{L}{p, r}}(\mathbb{R}d)$, the critical invariant spaces for the Navier-Stokes equations correspond to the value $s = \frac{d}{p} - 1$. When the initial datum belongs to the critical spaces $\dot{H}{\frac{d}{p} - 1}{\mathcal{L}{p,r}}(\mathbb{R}d)$ with $d \geq 2, 1 \leq p <\infty$, and $1 \leq r < \infty$, we establish the existence of local mild solutions to the Cauchy problem for the Navier-Stokes equations in spaces $L\infty([0, T]; \dot{H}{\frac{d}{p} - 1}{\mathcal{L}{p, r}}(\mathbb{R}d))$ with arbitrary initial value, and existence of global mild solutions in spaces $L\infty([0, \infty); \dot{H}{\frac{d}{p} - 1}{\mathcal{L}{p, r}}(\mathbb{R}d))$ when the norm of the initial value in the Besov spaces $\dot{B}{\frac{d}{\tilde p} - 1, \infty}{\mathcal{L} {\tilde p,\infty}}(\mathbb{R}d)$ is small enough, where $\tilde p$ may take some suitable values.