Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Finding a low-dimensional piece of a set of integers (1512.06272v2)

Published 19 Dec 2015 in math.CO and math.NT

Abstract: We show that a finite set of integers $A \subseteq \mathbb{Z}$ with $|A+A| \le K |A|$ contains a large piece $X \subseteq A$ with Fre\u{i}man dimension $O(\log K)$, where large means $|A|/|X| \ll \exp(O(\log2 K))$. This can be thought of as a major quantitative improvement on Fre\u{i}man's dimension lemma, or as a "weak" Fre\u{i}man--Ruzsa theorem with almost polynomial bounds. The methods used, centered around an "additive energy increment strategy", differ from the usual tools in this area and may have further potential. Most of our argument takes place over $\mathbb{F}_2n$, which is itself curious. There is a possibility that the above bounds could be improved, assuming sufficiently strong results in the spirit of the Polynomial Fre\u{i}man--Ruzsa Conjecture over finite fields.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)