Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized fractional maximal functions in Lorentz spaces (1512.04799v1)

Published 15 Dec 2015 in math.FA

Abstract: In this paper we give the complete characterization of the boundedness of the generalized fractional maximal operator $$ M_{\phi,\Lambda{\alpha}(b)}f(x) : = \sup_{Q \ni x} \frac{|f \chi_Q|_{\Lambda{\alpha}(b)}}{\phi (|Q|)} \qquad (x \in {\mathbb R}n), $$ between the classical Lorentz spaces $\Lambdap (v)$ and $\Lambdaq(w)$ for appropriate functions $\phi$, where $0 < p,\,q < \infty$, $0 < \alpha \le r < \infty$, $v,w,\,b$ are weight functions on $(0,\infty)$ such that $0 < B(x): = \int_0x b < \infty$, $x > 0$, $B \in \Delta_2$ and $B(t) / t{\alpha / r}$ is quasi-increasing.

Summary

We haven't generated a summary for this paper yet.