Nil-good and nil-good clean matrix rings (1512.04640v1)
Abstract: The notion of clean rings and 2-good rings have many variations, and have been widely studied. We provide a few results about two new variations of these concepts and discuss the theory that ties these variations to objects and properties of interest to noncommutative algebraists. A ring is called nil-good if each element in the ring is the sum of a nilpotent element and either a unit or zero. We establish that the ring of endomorphisms of a module over a division is nil-good, as well as some basic consequences. We then define a new property we call nil-good clean, the condition that an element of a ring is the sum of a nilpotent, an idempotent, and a unit. We explore the interplay between these properties and the notion of clean rings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.