Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Online Protest Participation of Social Media Users (1512.02968v1)

Published 9 Dec 2015 in cs.SI

Abstract: Social media has emerged to be a popular platform for people to express their viewpoints on political protests like the Arab Spring. Millions of people use social media to communicate and mobilize their viewpoints on protests. Hence, it is a valuable tool for organizing social movements. However, the mechanisms by which protest affects the population is not known, making it difficult to estimate the number of protestors. In this paper, we are inspired by sociological theories of protest participation and propose a framework to predict from the user's past status messages and interactions whether the next post of the user will be a declaration of protest. Drawing concepts from these theories, we model the interplay between the user's status messages and messages interacting with him over time and predict whether the next post of the user will be a declaration of protest. We evaluate the framework using data from the social media platform Twitter on protests during the recent Nigerian elections and demonstrate that it can effectively predict whether the next post of a user is a declaration of protest.

Citations (14)

Summary

We haven't generated a summary for this paper yet.