Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Protest Activity Detection and Perceived Violence Estimation from Social Media Images (1709.06204v1)

Published 18 Sep 2017 in cs.MM, cs.CV, and cs.SI

Abstract: We develop a novel visual model which can recognize protesters, describe their activities by visual attributes and estimate the level of perceived violence in an image. Studies of social media and protests use natural language processing to track how individuals use hashtags and links, often with a focus on those items' diffusion. These approaches, however, may not be effective in fully characterizing actual real-world protests (e.g., violent or peaceful) or estimating the demographics of participants (e.g., age, gender, and race) and their emotions. Our system characterizes protests along these dimensions. We have collected geotagged tweets and their images from 2013-2017 and analyzed multiple major protest events in that period. A multi-task convolutional neural network is employed in order to automatically classify the presence of protesters in an image and predict its visual attributes, perceived violence and exhibited emotions. We also release the UCLA Protest Image Dataset, our novel dataset of 40,764 images (11,659 protest images and hard negatives) with various annotations of visual attributes and sentiments. Using this dataset, we train our model and demonstrate its effectiveness. We also present experimental results from various analysis on geotagged image data in several prevalent protest events. Our dataset will be made accessible at https://www.sscnet.ucla.edu/comm/jjoo/mm-protest/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Donghyeon Won (1 paper)
  2. Zachary C. Steinert-Threlkeld (4 papers)
  3. Jungseock Joo (21 papers)
Citations (94)

Summary

We haven't generated a summary for this paper yet.