Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Layer potentials, Green's formulae, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups (1512.02547v4)

Published 8 Dec 2015 in math.AP

Abstract: We propose the analogues of boundary layer potentials for the sub-Laplacian on homogeneous Carnot groups/stratified Lie groups and prove continuity results for them. In particular, we show continuity of the single layer potential and establish the Plemelj type jump relations for the double layer potential. We prove sub-Laplacian adapted versions of the Stokes theorem as well as of Green's first and second formulae on homogeneous Carnot groups. Several applications to boundary value problems are given. As another consequence, we derive formulae for traces of the Newton potential for the sub-Laplacian to piecewise smooth surfaces. Using this we construct and study a nonlocal boundary value problem for the sub-Laplacian extending to the setting of the homogeneous Carnot groups M. Kac's "principle of not feeling the boundary". We also obtain similar results for higher powers of the sub-Laplacian. Finally, as another application, we prove refined versions of Hardy's inequality and of the uncertainty principle.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.