Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is Hamming distance the only way for matching binary image feature descriptors? (1512.02355v1)

Published 8 Dec 2015 in cs.CV

Abstract: Brute force matching of binary image feature descriptors is conventionally performed using the Hamming distance. This paper assesses the use of alternative metrics in order to see whether they can produce feature correspondences that yield more accurate homography matrices. Two statistical tests, namely ANOVA (Analysis of Variance) and McNemar's test were employed for evaluation. Results show that Jackard-Needham and Dice metrics can display better performance for some descriptors. Yet, these performance differences were not found to be statistically significant.

Citations (17)

Summary

We haven't generated a summary for this paper yet.