Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

On the tensor product of modules over skew monoidal actegories (1512.01353v2)

Published 4 Dec 2015 in math.CT and math.QA

Abstract: This paper is about skew monoidal tensored V-categories (= skew monoidal hommed V-actegories) and their categories of modules. A module over <M,*,R> is an algebra for the monad T = R * _ on M. We study in detail the skew monoidal structure of MT and construct a skew monoidal forgetful functor from MT to the category of E-objects in M where E=M(R,R) is the endomorphism monoid of the unit object R. Then we give conditions for the forgetful functor to be strong monoidal and for the category MT of modules to be monoidal. In formulating these conditions a notion of `self-cocomplete' subcategories of presheaves appears to be useful which provides also some insight into the problem of monoidality of the skew monoidal structures found by Altenkirch, Chapman and Uustalu on functor categories [C,M].

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)