Double operator integral methods applied to continuity of spectral shift functions (1511.07998v2)
Abstract: We derive two main results: First, assume that $A$, $B$, $A_n$, $B_n$ are self-adjoint operators in the Hilbert space $\mathcal{H}$, and suppose that $A_n$ converges to $A$ and $B_n$ to $B$ in strong resolvent sense as $n \to \infty$. Fix $m \in \mathbb{N}$, $m$ odd, $p \in [1,\infty)$, and assume that $T:= \big[( A + iI_{\mathcal{H}}){-m} - ( B + iI_{\mathcal{H}}){-m}\big] \in \mathcal{B}p(\mathcal{H})$, $T_n := \big[( A_n + iI{\mathcal{H}}){-m} - ( B_n + iI_{\mathcal{H}}){-m}\big] \in \mathcal{B}p(\mathcal{H})$, and $\lim{n \rightarrow \infty} |T_n - T|{\mathcal{B}_p(\mathcal{H})} =0$. Then for any function $f$ in the class $\mathfrak F{k}(\mathbb{R}) \supset C_0{\infty}(\mathbb{R})$ (cf. (1.1)), $$ \lim_{n \rightarrow \infty} \big| [f(A_n) - f(B_n)] - [f(A)- f(B)]\big|{\mathcal{B}_p(\mathcal{H})}=0. $$ Our second result concerns the continuity of spectral shift functions $\xi(\cdot; B,B_0)$ with respect to the operator parameter $B$. For $T$ self-adjoint in $\mathcal{H}$ we denote by $\Gamma_m(T)$, $m \in \mathbb{N}$ odd, the set of all self-adjoint operators $S$ in $\mathcal{H}$ satisfying $\big[(S - z I{\mathcal{H}}){-m} - (T - z I_{\mathcal{H}}){-m}\big] \in \mathcal{B}1(\mathcal{H})$, $z \in \mathbb{C}\backslash \mathbb{R}$. Employing a suitable topology on $\Gamma_m(T)$ (cf. (1.9), we prove the following: Suppose that $B_1\in \Gamma_m(B_0)$ and let ${B{\tau}}{\tau\in [0,1]}\subset \Gamma_m(B_0)$ denote a path from $B_0$ to $B_1$ in $\Gamma_m(B_0)$ depending continuously on $\tau\in [0,1]$ with respect to the topology on $\Gamma_m(B_0)$. If $f \in L{\infty}(\mathbb{R})$, then $$ \lim{\tau\to 0+} |\xi(\, \cdot \, ; B_{\tau}, A_0) f - \xi(\, \cdot \, ; B_0, A_0) f|_{L1(\mathbb{R}; (|\nu|{m+1} + 1){-1}d\nu)} = 0. $$