Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudodifferential Operators on Variable Lebesgue Spaces (1110.0297v1)

Published 3 Oct 2011 in math.FA

Abstract: Let $\mathcal{M}(\mathbb{R}n)$ be the class of bounded away from one and infinity functions $p:\mathbb{R}n\to[1,\infty]$ such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L{p(\cdot)}(\mathbb{R}n)$. We show that if $a$ belongs to the H\"ormander class $S_{\rho,\delta}{n(\rho-1)}$ with $0<\rho\le 1$, $0\le\delta<1$, then the pseudodifferential operator $\Op(a)$ is bounded on the variable Lebesgue space $L{p(\cdot)}(\Rn)$ provided that $p\in\cM(\Rn)$. Let $\mathcal{M}*(\mathbb{R}n)$ be the class of variable exponents $p\in\mathcal{M}(\mathbb{R}n)$ represented as $1/p(x)=\theta/p_0+(1-\theta)/p_1(x)$ where $p_0\in(1,\infty)$, $\theta\in(0,1)$, and $p_1\in\mathcal{M}(\mathbb{R}n)$. We prove that if $a\in S_{1,0}0$ slowly oscillates at infinity in the first variable, then the condition [ \lim_{R\to\infty}\inf_{|x|+|\xi|\ge R}|a(x,\xi)|>0 ] is sufficient for the Fredholmness of $\Op(a)$ on $L{p(\cdot)}(\Rn)$ whenever $p\in\cM*(\Rn)$. Both theorems generalize pioneering results by Rabinovich and Samko \cite{RS08} obtained for globally log-H\"older continuous exponents $p$, constituting a proper subset of $\mathcal{M}*(\mathbb{R}n)$.

Summary

We haven't generated a summary for this paper yet.