Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Large deviations for configurations generated by Gibbs distributions with energy functionals consisting of singular interaction and weakly confining potentials (1511.06928v4)

Published 21 Nov 2015 in math.PR, math-ph, and math.MP

Abstract: We establish large deviation principles (LDPs) for empirical measures associated with a sequence of Gibbs distributions on $n$-particle configurations, each of which is defined in terms of an inverse temperature $% \beta_n$ and an energy functional consisting of a (possibly singular) interaction potential and a (possibly weakly) confining potential. Under fairly general assumptions on the potentials, we use a common framework to establish LDPs both with speeds $\beta_n/n \rightarrow \infty$, in which case the rate function is expressed in terms of a functional involving the potentials, and with speed $\beta_n =n$, when the rate function contains an additional entropic term. Such LDPs are motivated by questions arising in random matrix theory, sampling, simulated annealing and asymptotic convex geometry. Our approach, which uses the weak convergence method developed by Dupuis and Ellis, establishes LDPs with respect to stronger Wasserstein-type topologies. Our results address several interesting examples not covered by previous works, including the case of a weakly confining potential, which allows for rate functions with minimizers that do not have compact support, thus resolving several open questions raised in a work of Chafa\"{\i} et al.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.