Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A polynomial expansion line search for large-scale unconstrained minimization of smooth L2-regularized loss functions, with implementation in Apache Spark (1510.08345v2)

Published 28 Oct 2015 in math.NA, cs.DC, and cs.NA

Abstract: In large-scale unconstrained optimization algorithms such as limited memory BFGS (LBFGS), a common subproblem is a line search minimizing the loss function along a descent direction. Commonly used line searches iteratively find an approximate solution for which the Wolfe conditions are satisfied, typically requiring multiple function and gradient evaluations per line search, which is expensive in parallel due to communication requirements. In this paper we propose a new line search approach for cases where the loss function is analytic, as in least squares regression, logistic regression, or low rank matrix factorization. We approximate the loss function by a truncated Taylor polynomial, whose coefficients may be computed efficiently in parallel with less communication than evaluating the gradient, after which this polynomial may be minimized with high accuracy in a neighbourhood of the expansion point. Our Polynomial Expansion Line Search (PELS) was implemented in the Apache Spark framework and used to accelerate the training of a logistic regression model on binary classification datasets from the LIBSVM repository with LBFGS and the Nonlinear Conjugate Gradient (NCG) method. In large-scale numerical experiments in parallel on a 16-node cluster with 256 cores using the URL, KDDA, and KDDB datasets, the PELS approach produced significant convergence improvements compared to the use of classical Wolfe line searches. For example, to reach the final training label prediction accuracies, LBFGS using PELS had speedup factors of 1.8--2 over LBFGS using a Wolfe line search, measured by both the number of iterations and the time required, due to the better accuracy of step sizes computed in the line search. PELS has the potential to significantly accelerate large-scale regression and factorization computations, and is applicable to continuous optimization problems with smooth loss functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube