Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Takens' embedding theorem with a continuous observable (1510.05843v2)

Published 20 Oct 2015 in math.DS, math-ph, and math.MP

Abstract: Let $(X,T)$ be a dynamical system where $X$ is a compact metric space and $T:X\rightarrow X$ is continuous and invertible. Assume the Lebesgue covering dimension of $X$ is $d$. We show that for a generic continuous map $h:X\rightarrow[0,1]$, the $(2d+1)$-delay observation map $x\mapsto\big(h(x),h(Tx),\ldots,h(T{2d}x)\big)$ is an embedding of $X$ inside $[0,1]{2d+1}$. This is a generalization of the discrete version of the celebrated Takens embedding theorem, as proven by Sauer, Yorke and Casdagli to the setting of a continuous observable. In particular there is no assumption on the (lower) box-counting dimension of $X$ which may be infinite.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube