Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing and Contrasting Recurrent Neural Network Architectures (1510.04953v1)

Published 16 Oct 2015 in stat.ML, cs.LG, and cs.NE

Abstract: Recurrent Neural Networks (RNNs) have long been recognized for their potential to model complex time series. However, it remains to be determined what optimization techniques and recurrent architectures can be used to best realize this potential. The experiments presented take a deep look into Hessian free optimization, a powerful second order optimization method that has shown promising results, but still does not enjoy widespread use. This algorithm was used to train to a number of RNN architectures including standard RNNs, long short-term memory, multiplicative RNNs, and stacked RNNs on the task of character prediction. The insights from these experiments led to the creation of a new multiplicative LSTM hybrid architecture that outperformed both LSTM and multiplicative RNNs. When tested on a larger scale, multiplicative LSTM achieved character level modelling results competitive with the state of the art for RNNs using very different methodology.

Citations (1)

Summary

We haven't generated a summary for this paper yet.