Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Order Recurrent Neural Networks for Acoustic Modelling (1802.08314v1)

Published 22 Feb 2018 in cs.CL, cs.AI, eess.AS, and stat.ML

Abstract: Vanishing long-term gradients are a major issue in training standard recurrent neural networks (RNNs), which can be alleviated by long short-term memory (LSTM) models with memory cells. However, the extra parameters associated with the memory cells mean an LSTM layer has four times as many parameters as an RNN with the same hidden vector size. This paper addresses the vanishing gradient problem using a high order RNN (HORNN) which has additional connections from multiple previous time steps. Speech recognition experiments using British English multi-genre broadcast (MGB3) data showed that the proposed HORNN architectures for rectified linear unit and sigmoid activation functions reduced word error rates (WER) by 4.2% and 6.3% over the corresponding RNNs, and gave similar WERs to a (projected) LSTM while using only 20%--50% of the recurrent layer parameters and computation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chao Zhang (907 papers)
  2. Philip Woodland (5 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.