Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss (1510.04850v3)

Published 16 Oct 2015 in stat.ML

Abstract: We address the problem of detecting changes in multivariate datastreams, and we investigate the intrinsic difficulty that change-detection methods have to face when the data dimension scales. In particular, we consider a general approach where changes are detected by comparing the distribution of the log-likelihood of the datastream over different time windows. Despite the fact that this approach constitutes the frame of several change-detection methods, its effectiveness when data dimension scales has never been investigated, which is indeed the goal of our paper. We show that the magnitude of the change can be naturally measured by the symmetric Kullback-Leibler divergence between the pre- and post-change distributions, and that the detectability of a change of a given magnitude worsens when the data dimension increases. This problem, which we refer to as \emph{detectability loss}, is due to the linear relationship between the variance of the log-likelihood and the data dimension. We analytically derive the detectability loss on Gaussian-distributed datastreams, and empirically demonstrate that this problem holds also on real-world datasets and that can be harmful even at low data-dimensions (say, 10).

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.