Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient implementation of the parquet equations -- role of the reducible vertex function and its kernel approximation (1510.03330v1)

Published 12 Oct 2015 in cond-mat.str-el

Abstract: We present an efficient implementation of the parquet formalism which respects the asymptotic structure of the vertex functions at both single- and two-particle levels in momentum- and frequency-space. We identify the two-particle reducible vertex as the core function which is essential for the construction of the other vertex functions. This observation stimulates us to consider a two-level parameter-reduction for this function to simplify the solution of the parquet equations. The resulting functions, which depend on fewer arguments, are coined "kernel functions". With the use of the "kernel functions", the open boundary of various vertex functions in the Matsubara-frequency space can be faithfully satisfied. We justify our implementation by accurately reproducing the dynamical mean-field theory results from momentum-independent parquet calculations. The high-frequency asymptotics of the single-particle self-energy and the two-particle vertex are correctly reproduced, which turns out to be essential for the self-consistent determination of the parquet solutions. The current implementation is also feasible for the dynamical vertex approximation.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube