Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Bayesian model averaging: A systematic review and conceptual classification (1509.08864v1)

Published 29 Sep 2015 in stat.ME and stat.AP

Abstract: Bayesian Model Averaging (BMA) is an application of Bayesian inference to the problems of model selection, combined estimation and prediction that produces a straightforward model choice criteria and less risky predictions. However, the application of BMA is not always straightforward, leading to diverse assumptions and situational choices on its different aspects. Despite the widespread application of BMA in the literature, there were not many accounts of these differences and trends besides a few landmark revisions in the late 1990s and early 2000s, therefore not taking into account any advancements made in the last 15 years. In this work, we present an account of these developments through a careful content analysis of 587 articles in BMA published between 1996 and 2014. We also develop a conceptual classification scheme to better describe this vast literature, understand its trends and future directions and provide guidance for the researcher interested in both the application and development of the methodology. The results of the classification scheme and content review are then used to discuss the present and future of the BMA literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.