Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Large-Scale Retrieval: Binary or n-ary Coding? (1509.06066v1)

Published 20 Sep 2015 in cs.CV

Abstract: The growing amount of data available in modern-day datasets makes the need to efficiently search and retrieve information. To make large-scale search feasible, Distance Estimation and Subset Indexing are the main approaches. Although binary coding has been popular for implementing both techniques, n-ary coding (known as Product Quantization) is also very effective for Distance Estimation. However, their relative performance has not been studied for Subset Indexing. We investigate whether binary or n-ary coding works better under different retrieval strategies. This leads to the design of a new n-ary coding method, "Linear Subspace Quantization (LSQ)" which, unlike other n-ary encoders, can be used as a similarity-preserving embedding. Experiments on image retrieval show that when Distance Estimation is used, n-ary LSQ outperforms other methods. However, when Subset Indexing is applied, interestingly, binary codings are more effective and binary LSQ achieves the best accuracy.

Summary

We haven't generated a summary for this paper yet.