Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearest neighbor search with compact codes: A decoder perspective (2112.09568v2)

Published 17 Dec 2021 in cs.CV and cs.LG

Abstract: Modern approaches for fast retrieval of similar vectors on billion-scaled datasets rely on compressed-domain approaches such as binary sketches or product quantization. These methods minimize a certain loss, typically the mean squared error or other objective functions tailored to the retrieval problem. In this paper, we re-interpret popular methods such as binary hashing or product quantizers as auto-encoders, and point out that they implicitly make suboptimal assumptions on the form of the decoder. We design backward-compatible decoders that improve the reconstruction of the vectors from the same codes, which translates to a better performance in nearest neighbor search. Our method significantly improves over binary hashing methods or product quantization on popular benchmarks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.