Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results (1509.05836v2)

Published 19 Sep 2015 in math.AP

Abstract: In this paper, we classify the singularities of nonnegative solutions to fractional elliptic equation \begin{equation}\label{eq 0.1} \arraycolsep=1pt \begin{array}{lll} \displaystyle (-\Delta)\alpha u=up\quad &{\rm in}\quad \Omega\setminus{0},\[2mm] \phantom{ (-\Delta)\alpha } \displaystyle u=0\quad &{\rm in}\quad \mathbb{R}N\setminus\Omega, \end{array} \end{equation} where $p>1$, $\Omega$ is a bounded, $C2$ domain in $\mathbb{R}N$ containing the origin, $N\ge2$ and the fractional Laplacian $(-\Delta)\alpha$ is defined in the principle value sense. We obtain that any classical solution $u$ of (\ref{eq 0.1}) is a weak solution of \begin{equation}\label{eq 0.2} \arraycolsep=1pt \begin{array}{lll} \displaystyle (-\Delta)\alpha u=up+k\delta_0\quad &{\rm in}\quad \Omega,\[2mm] \phantom{ (-\Delta)\alpha } \displaystyle u=0\quad &{\rm in}\quad \mathbb{R}N\setminus\Omega \end{array} \end{equation} for some $k\ge0$, where $\delta_0$ is the Dirac mass at the origin. In particular, when $p\ge \frac{N}{N-2\alpha}$, we have that $k=0$; when $p< \frac{N}{N-2\alpha}$, $u$ has removable singularity at the origin if $k=0$ and if $k>0$, $u$ satisfies $$\lim_{x\to0} u(x)|x|{N-2\alpha}=c_{N,\alpha}k,$$ where $c_{N,\alpha}>0$. Furthermore, when $p\in(1, \frac{N}{N-2\alpha})$, we obtain that there exists $k*>0$ such that problem (\ref{eq 0.1}) has at least two positive solutions for $k<k^*$, a unique positive solution for $k=k^*$ and no positive solution for $k>k*$.

Summary

We haven't generated a summary for this paper yet.