Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On isolated singularities of Kirchhoff--type Laplacian problems (1708.03041v1)

Published 10 Aug 2017 in math.AP

Abstract: In this paper, we study isolated singular positive solutions for the following Kirchhoff--type Laplacian problem: \begin{equation*} -\left(\theta+\int_{\Omega} |\nabla u| dx\right)\Delta u =up \quad{\rm in}\quad \Omega\setminus {0},\qquad u=0\quad {\rm on}\quad \partial \Omega, \end{equation*} where $p>1$, $\theta\in \R$, $\Omega$ is a bounded smooth domain containing the origin in $\RN$ with $N\ge 2$. In the subcritical case: $1<p<N/(N-2)$ if $N\ge3$, $1<p<+\infty$ if $N=2$, we employ the Schauder fixed-point theorem to derive a sequence of positive isolated singular solutions for the above problem such that $M_\theta(u)\>0$. To estimate $M_\theta(u)$, we make use of the rearrangement argument. Furthermore, we obtain a sequence of isolated singular solutions such that $M_\theta(u)<0$, by analyzing relationship between the parameter $\lambda$ and the unique solution $u_\lambda$ of $$-\Delta u+\lambda up=k\delta_0\quad{\rm in}\quad B_1(0),\qquad u=0\quad {\rm on}\quad \partial B_1(0).$$ In the supercritical case: $N/(N-2)\le p<(N+2)/(N-2)$ with $N\ge3$, we obtain two isolated singular solutions $u_i$ with $i=1,2$ such that $M_\theta(u_i)>0$ under some appropriate assumptions.

Summary

We haven't generated a summary for this paper yet.