Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

FPTAS for Hardcore and Ising Models on Hypergraphs (1509.05494v1)

Published 18 Sep 2015 in cs.DS

Abstract: Hardcore and Ising models are two most important families of two state spin systems in statistic physics. Partition function of spin systems is the center concept in statistic physics which connects microscopic particles and their interactions with their macroscopic and statistical properties of materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system involves only two particles, the system can be described by a graph. In this case, fully polynomial-time approximation scheme (FPTAS) for computing the partition function of both hardcore and anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These result are the best possible since approximately computing the partition function beyond this threshold is NP-hard. In this paper, we generalize these results to general physics systems, where each local interaction may involves multiple particles. Such systems are described by hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and for anti-ferromagnetic Ising model, we obtain FPTAS where a slightly stronger condition holds.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube