Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The adaptive patched cubature filter and its implementation (1509.04239v1)

Published 14 Sep 2015 in cs.IT and math.IT

Abstract: There are numerous contexts where one wishes to describe the state of a randomly evolving system. Effective solutions combine models that quantify the underlying uncertainty with available observational data to form scientifically reasonable estimates for the uncertainty in the system state. Stochastic differential equations are often used to mathematically model the underlying system. The Kusuoka-Lyons-Victoir (KLV) approach is a higher order particle method for approximating the weak solution of a stochastic differential equation that uses a weighted set of scenarios to approximate the evolving probability distribution to a high order of accuracy. The algorithm can be performed by integrating along a number of carefully selected bounded variation paths. The iterated application of the KLV method has a tendency for the number of particles to increase. This can be addressed and, together with local dynamic recombination, which simplifies the support of discrete measure without harming the accuracy of the approximation, the KLV method becomes eligible to solve the filtering problem in contexts where one desires to maintain an accurate description of the ever-evolving conditioned measure. In addition to the alternate application of the KLV method and recombination, we make use of the smooth nature of the likelihood function and high order accuracy of the approximations to lead some of the particles immediately to the next observation time and to build into the algorithm a form of automatic high order adaptive importance sampling.

Citations (2)

Summary

We haven't generated a summary for this paper yet.