Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Stochastic Analysis of Autoregulation of Gene Expression (1509.02045v2)

Published 7 Sep 2015 in q-bio.MN

Abstract: This paper analyzes, in the context of a prokaryotic cell, the stochastic variability of the number of proteins when there is a control of gene expression by an autoregulation scheme. The goal of this work is to estimate the efficiency of the regulation to limit the fluctuations of the number of copies of a given protein. The autoregulation considered in this paper relies mainly on a negative feedback: the proteins are repressors of their own gene expression. The efficiency of a production process without feedback control is compared to a production process with an autoregulation of the gene expression assuming that both of them produce the same average number of proteins. The main characteristic used for the comparison is the standard deviation of the number of proteins at equilibrium. With a Markovian representation and a simple model of repression, we prove that, under a scaling regime, the repression mechanism follows a Hill repression scheme with an hyperbolic control. An explicit asymptotic expression of the variance of the number of proteins under this regulation mechanism is obtained. Simulations are used to study other aspects of autoregulation such as the rate of convergence to equilibrium of the production process and the case where the control of the production process of proteins is achieved via the inhibition of mRNAs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube