Implicit Lagrange-Routh Equations and Dirac Reduction (1509.01946v2)
Abstract: In this paper, we make a generalization of Routh's reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.