Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved bounded-strength decoupling schemes for local Hamiltonians (1509.00408v2)

Published 1 Sep 2015 in quant-ph and cs.ET

Abstract: We address the task of switching off the Hamiltonian of a system by removing all internal and system-environment couplings. We propose dynamical decoupling schemes, that use only bounded-strength controls, for quantum many-body systems with local system Hamiltonians and local environmental couplings. To do so, we introduce the combinatorial concept of balanced-cycle orthogonal arrays (BOAs) and show how to construct them from classical error-correcting codes. The derived decoupling schemes may be useful as a primitive for more complex schemes, e.g., for Hamiltonian simulation. For the case of $n$ qubits and a $2$-local Hamiltonian, the length of the resulting decoupling scheme scales as $O(n \log n)$, improving over the previously best-known schemes that scaled quadratically with $n$. More generally, using balanced-cycle orthogonal arrays constructed from families of BCH codes, we show that bounded-strength decoupling for any $\ell$-local Hamiltonian, where $\ell \geq 2$, can be achieved using decoupling schemes of length at most $O(n{\ell-1} \log n)$.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.